
VCLAB Diffusion Study

Sookwan Han (link)
Visual Computing LAB (link)

1 Noise-Conditional Score Network (NCSN)
Reference: Generative Modeling by Estimating Gradients of Data Distribution (Song et al.) [7]

1.1 Preliminatries
1.1.1 Generative Models

Prior works on “Generative models” pose limitations

• Likelihood-based methods (VAE, Normalizing Flow, etc.)

– Requires to model normalized probability: Special architecture required

– Surrogate losses are optimized (e.g., ELBO in VAE)

• Generative Adversarial Nets

– Training is unstable (due to adversarial training)

– GAN objective (adversarial objective) is not directly comparable, and not suitable for evaluation
(note: likelihood-model models probability, which is directly comparable)

1.1.2 What is “score”??

Definition: (Stein) score is gradient of logarithmic probability density, i.e.,

s(x) = ∇x log pdata(x) (1)

where x ∈ Rd is a datapoint.

1.1.3 What is Langevin dynamics?

Originally came out to explain dynamics of molecules, which is highly stochastic: meaning, there exists noise
perturbations during process.

1.1.4 Score-matching [4]

Goal: train a network: sθ : Rd −→ Rd that predicts scores at given datapoint, i.e.,

Find θ s.t. minimizes
1

2
∥sθ(x)−∇x log pdata(x)∥2 at any x (2)

i.e., find θ∗ s.t.

θ∗ = argmin
θ

Ex∼pdata(x)[
1

2
∥sθ(x)−∇x log pdata(x)∥2] (3)

which is equivalent to solving computationally expensive problem:

θ∗ = argmin
θ

Ex∼pdata(x)[
1

2
∥sθ(x)∥2+tr(∇xsθ(x))] (4)

1

https://jellyheadandrew.github.io
https://jhugestar.github.io

which is again equivalent to solving a slightly-less computationally expensive problem, known as Slice Score-
Matching [8]:

θ∗ = argmin
θ

Ev∼N (0,I)Ex∼pdata(x)[v
T∇xsθ(x)v +

1

2
∥sθ(x)∥2] (5)

Problem 1. Show that Eq. 3 and Eq. 4 are equivalent.

Problem 2. Show that Eq. 4 and Eq. 5 are equivalent.

2

1.2 Challenges in Score-Based Generative Modelling
1.2.1 Manifold Hypothesis & Inaccurate Score Estimation

The space data can lie in is high-dimensional, i.e., d from x ∈ Rd is very big. However, dataset only covers a
very small subset of the high-dimensional space: so we can assume dataset lies on low-dimensional manifold.
This causes the following problems when score-matching:

• Data is not sampled from most of the space except manifold (i.e., ambient space); hence, bad estimates of
score in ambient space

• when sampling, if initial datapoint is given in low-density region, not much information is given−→Wrong
sampling may occur, or sample may not move to the mode (peak of distribution)

Figure 1: Reference: [6].Inaccurate score estimation in low-density regions

1.2.2 Slow mixing of Langevin Dynamics

When sampling with Langevin Dynamics, we require careful steps when moving sample to mode to model
correct weights between modes. I.e., to retrieve correct ratio of samples from different modes (i.e., 1000
samples in region with density 1

5 and 2000 samples in region with density 2
5), we need many “small-step-size”

steps of Langevin steps applied.
This is because scores tend to get dominated with main-factor when near the mode and ignore the weights of
mode. Look at the simple toy example below:

pdata(x) = πp1(x) + (1− π)p2(x) (6)

When x is near the mode of p1, the density is dominated by the main-factor p1 as:

If x near argmax
x

p1(x), pdata(x) ≃ πp1(x) (7)

Then, the score would be approximately

∇x log pdata(x) ≃ ∇x log p1(x) +∇x log π = ∇x log p1(x) (8)

which ignores the weighting factor π. Hence, to take into account the minuscule effect of π, we require very
small step size and many steps during Langevin sampling.

3

1.3 How does this work mitigate these problems?
1.3.1 Perturbing data-distribution with noise

Score-estimation & score-matching was inaccurate in low data-density regions (ambient space) since we can’t
sample data from these regions to use for training. To mitigate this, we intentionally mix noise to the existing
data to generate samples in the low-density regions. Higher the noise, the more uniform the data will cover the
ambient space.
We generate noisy samples x̃ from original data samples x using a predefined noise kernel:

qσ(x̃|x) = N (x̃|x, σ2I) (9)

Then we can express a marginal distribution for noisy sample x̃:

qσ(x̃) =

∫
x

qσ(x̃|x)pdata(x)dx (10)

Now we will aim to train a Noise-Conditioned Score Network that estimates scores for noisy distribution
qσ(x̃) for every noise condition σ:

Find θ s.t. minimizes
1

2
∥sθ(x̃;σ)−∇x log pdata(x̃)∥2 at any noisy sample x̃ obtained via qσ(x̃) (11)

i.e., find θ∗ s.t.

θ∗ = argmin
θ

Ex̃∼qσ(x̃)[
1

2
∥sθ(x̃;σ)−∇x̃ log qσ(x̃)∥2] (12)

This is intractable, as we need to sample from qσ(x̃). However, with a slight mathematical trick, we can make
this into an equivalent problem that is tractable:

θ∗ = argmin
θ

Ex∼pdata(x)Ex̃∼qσ(x̃|x)[
1

2
∥sθ(x̃;σ)−∇x̃ log qσ(x̃|x)∥2] (13)

where qσ(x̃|x) is tractable and x ∼ pdata(x) is also tractable as we can replace it with Monte-Carlo sampling.

Problem 3. Show that Eq. 12 and Eq. 13 are equivalent.

4

Using the given form of qσ(x̃|x) as in Eq. 9 and substituting the components in Eq. 13, we can know de-
rive the objectives:

L(θ;σ) = 1

2
Ex∼pdata(x)Ex̃∼N (x,σ2I)[∥sθ(x̃;σ)−

x− x̃

σ2
∥2] (14)

for all noise scale σ:

L(θ; {σi}Ti=1) =
1

T

T∑
i=1

λ(σi)L(θ;σi) (15)

where λ(σi) is a scaling hyperparameter. Since x−x̃
σ ∼ N (0, I), it seems reasonable to set λ(σ) = σ2. This way,

the order of magnitude of λ(σ)L(θ;σ) does not depend on σ.

1.3.2 Annealed Langevin Dynamics for Inference

When the data-distribution pdata(x) is perturbed by high-noise scale σ, we can span the whole space and mollify
the distribution to have minimal low-density region. This means that the score-estimations will be accurate for
any points x when σ is high; meaning, for any initialization, the sample can find its way to the mode.
After the NCSN sθ(x;σ) is trained, we can use it to push samples to the mode of qσ1

(x̃) as:

x̃t ←− x̃t−1 +
αi

2
sθ(x̃t−1;σi) +

√
αizt (16)

where zt is Langevin noise, αi is step-size at noise-scael σi. Then, we can use the final spot at noise σ1 as
initialization for reduced noise-scale distribution qσ2(x̃). Again, we can push the samples and use the final spot
as initialization for smaller noise-scale σ3.

Figure 2: Reference: [6]. Accurate score estimation when noise is perturbed.

As noise-scale becomes smaller (σ1

σ2
= σ1

σ2
= ... = σT−1

σT
> 1)

• score estimations will become more inaccurate in the low-density regions

• slower and more careful Langevin mixing is required

However, as we use the previous sampling results as the initialization (prior) for sampling at current noise-scale,
1. we do not need to worry about inaccuracy as we will already be in high-density region.
Also,
2. By applying progressively smaller step-sizes for sampling as noise-scale reduces, we can mitigate the
second problem addressed.

5

2 Denoising Diffusion Probabilistic Models (DDPM)
Reference: Denoising Diffusion Probabilistic Models (Ho et al.) [2]

Diffusion model takes a probabilistic approach of viewing SDEs. It is later known to be equivalent as SDE.

2.1 Objectives
Diffusion model is a Markov-Chain latent variable model that “destroys” training data through addition of
Gaussian Noise, and learn how to “denoise” a noisy sample. This way, at inference, we can generate samples
from arbitrary noise.
We assume that we are given how the data x0 ∼ pdata is destroyed (forward kernel):

q(xt|xt−1) = N (xt|
√
1− βtxt−1, βtI), 0 < βt < 1 (17)

which can be aggregated to a “shortcut” from x0 to xt:

q(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I), αt = 1− βt, ᾱt = αtαt−1...α1 (18)

The aim of the diffusion model is to learn how to “reverse” the noising process (i.e., denoising) starting from the
random noise xT to x0 to sample data x0:

Find θ s.t. following processes pθ(xt−1|xt) = N (xt−1|µθ(xt; t),Σθ(xt; t)) gives x0 ∼ pdata(x0) (19)

i.e., finding θ∗ that maximizes the marginalized probability of x0 for x0 sampled from dataset:

θ∗ = argmin
θ

Ex0∼pdata(x)[− log pθ(x0)] = argmin
θ

Ex0∼pdata(x)[− log

∫
x1:T

pθ(x0:T)dx1:T] (20)

Problem 4. Derive Eq. 18 from Eq. 17.

Problem 5. Assume Var(x0) = 1. Prove that ∀t,Var(xt) = 1.

6

2.2 Surrogate Objectives
By Jensen’s inequality, we obtain the upper-bound of negative-log-likelihood:

Ex0∼pdata(x)[− log

∫
x1:T

pθ(x0:T)dx1:T] ≤ Ex0∼pdataEx1:T∼q(x1:T |x0)[− log
pθ(x0:T)

q(x1:T |x0)
] (21)

Using the Markov Chain property, we can decompose the right-hand side to:

Lvlb := Ex0∼pdataEx1:T∼q(x1:T |x0)[− log pθ(xT)−
T∑

t=1

log
pθ(xt−1|xt)

q(xt|xt−1)
] (22)

The surrogate objective looks good, but holds problem since we need to compare xt−1 from pθ(xt−1|xt) and xt

from q(xt|xt−1), which is unsuitable for direct computation (in the form of KL-divergence). Apply Bayes’ rule,
and we obtain:

Lvlb = Ex0∼pdataEx1:T∼q(x1:T |x0)[− log
pθ(xT)

q(xT |x0)
−

T∑
t=2

log
pθ(xt−1|xt)

q(xt−1|xt, x0)
− log pθ(x0|x1)] (23)

Instead of computing and adding all the terms in Eq. 23 for optimization, we choose to random-sample timestep
t and optimize following surrogate objective:

∀t = 2, ..., T : Lt−1 = Ex0∼pdataEx1:T∼q(x1:T |x0)[− log
pθ(xt−1|xt)

q(xt−1|xt, x0)
] (24)

which is same as KL-divergence of two distributions!

Problem 6. Prove Eq. 21

Problem 7. Derive Eq. 23 from Eq. 22.

7

2.3 Computing Surrogate Losses
The x0 ∼ pdata(x) term in Eq. 24 is tractable if we replace it with Monte-Carlo sampling; hence, we only need to
know how to compute Ex1:T∼q(x1:T |x0)[− log pθ(xt−1|xt)

q(xt−1|xt,x0)
], which is same as

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt)) (25)

Note that for two Gaussians, this value is easy to compute:

DKL(p||q) =
1

2
[µT

p µp + tr(Σp)− d− log|Σp|] (26)

where d is dimension. So basically, we are trying to fit pθ(xt−1|xt) to q(xt−1|xt, x0). Let’s denote q(xt−1|xt, x0) =
N (xt−1|µ̃(xt, x0; t), β̃(t)I). Then, computing Eq. 26 suffices to computing:

1

2σ2
t

∥µ̃(xt, x0; t)− µθ(xt; t)∥2 (27)

where σ2
t = β̃(t) = 1−ᾱt−1

1−ᾱt
βt.

Problem 8. Prove that q(xt−1|xt, x0) = N (xt−1|µ̃(xt, x0; t), β̃(t)I) where:

µ̃(xt, x0; t) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt =

1
√
αt

(xt −
βt√
1− ᾱt

ϵ), β̃(t) =
1− ᾱt−1

1− ᾱt
βt (28)

by applying Bayes’ rule to Eq. 17 and Eq. 18. (note: xt =
√
ᾱtx0 +

√
1− ᾱtϵ)

We’re back again, let’s try to make µθ as same structure as µ̃. Thinking of xt =
√
ᾱtx0 +

√
1− ᾱtϵ,

since µ̃ is given up in Problem 8, we can re-parametrize epsilon term to express the mean µθ:

µθ(xt; t) =
1√
ᾱt

(xt −
βt√
1− ᾱt

ϵθ(xt; t)) (29)

Then, we can finally express surrogate objective Lt−1 as:

Lt−1 = Ex0∼pdata(x),ϵ∼N (0,I)[
β2
t

2σ2
tαt(1− ᾱt)

∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ; t)∥2] (30)

which is very similar to NCSN!! (except noise-scale σ is turned to timescale t) The sampling procedure:

xt−1 =
1
√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt; t)) + σtzt (31)

is also very similar to the Langevin dynamics of NCSN (ϵθ resembles score-function) Note that xT ∼ N (0, I) is
sampled from pure Gaussian noise, assuming the noise-scale ᾱt is almost 1 when t −→ T .

8

3 Classifier-Free Guidance
Reference: Classifier-Free Diffusion Guidance (Ho et al.) [3]

Now we consider the situation where we would like to condition the diffusion model with some condition
c, that is:

ϵθ(xt; t) −→ ϵθ(xt, c; t) (32)

3.1 Classifier Guidance
In Diffusion beat GANs on Image Synthesis (Dariwhal et al.) [1], the authors introduce an auxiliary classifier pϕ
to the model as:

ϵ̃θ(xt, c; t) = ϵθ(xt, c; t)− ωσt∇xt
log pϕ(c|xt) (33)

which pushes the sample xt to the high pϕ(c|xt) (aka, fidelity to given condition) region when the sample takes
a step following Eq. 31, where as ω increases, fidelity to condition increases but diversity of samples decrease
(fidelity-diversity trade-off).

3.2 Classifier-Free Guidance
Challenges of Classifier-Guidance is:

• Additional classifier-model (additional parameters ϕ) is required, complicating training pipeline

• Classifier-model needs to be trained on noisy data xt: we cannot plug-in pretrained model

Let’s try to achieve similar effects without having to define any auxiliary models! −→ Classifier-Free Guidance

Instead of using classifier model pϕ, let’s think of an implicit classifier p(c|xt), which is by Bayes’ rule:

p(c|xt) =
p(xt|c)p(c)

p(xt)
−→ log p(c|xt) = log p(xt|c)− log p(xt) + C (34)

where it is natural to think of design choice of p(xt|c) and p(xt) be modelled with θ. Then, to increase the
fidelity of samplme xt w.r.t. condition c, we can aim to maximize:

pθ(xt)pθ(c|xt)
ω (35)

instead of pθ(xt), where the score-function would be:

∇xt [log pθ(xt)pθ(c|xt)
ω] = ∇xt log pθ(xt) + ω(∇xtpθ(xt|c)−∇xtpθ(xt)) (36)

This can be re-written in ϵ-notation as in DDPM via simple rescaling:

ϵnew
θ (xt, c; t) = (1 + ω)ϵθ(xt, c; t)− ωϵθ(xt; t) (37)

where ω is known as classifier-free guidance weight. This process resembles of extrapolating the score-vectors
toward the direction of mode-when-conditioned.

Problem 9. What would be the scale-factor between the real score function∇xt
log pθ(xt) and normalized noise

perturbation from DDPM ϵθ(xt)?

9

4 DDIM
Reference: Denoising Diffusion Implicit Models (Song et al.) [5]

4.1 Challenges with Diffusion Models
Although diffusion models show good sample quality, the model has some drawbacks:

• Very slow inference time. Due to iterative denoising process, the model requires multiple model passes
which slows inference process.

• Uncontrolled stochasticity. Although the stochastic reverse-process of diffusion model gives us diversity
of samples, we cannot control it.

To mitigate these challenges, new non-Markovian forward kernel that can introduce a new hyperparameter that
controls stochasticity of generation process.

4.2 Non-Markovian Forward Kernel
RECALL: In DDPM, the forward kernel was defined as:

q(xt|xt−1) = N (xt|
√

1− βtxt−1, βtI) (38)

so that we have marginalized kernel:

q(xt|x0) = N (xt|
√
ᾱtxt−1, (1− ᾱt)I) (39)

which is used for sampling xt directly from x0 (shortcut!).

We will re-define the forward kernel (i.e., DDIM forward kernel) to have same marginalized kernel, but
also stochastically-controllable, as:

qσ(xT |x0) = N (xT |
√
ᾱTx0, (1− ᾱT)I) (40)

for t = 2, ..., T : qσ(xt−1|xt, x0) = N (xt−1|
√
ᾱt−1x0 +

√
1− ᾱt−1 − σ2

t ·
xt −

√
ᾱtx0√

1− ᾱt
, σ2

t I) (41)

Note that σ = [σ1, ..., σT] which is an hyperparameter. In practice, the σ values are set as σt = η
√

1−ᾱt−1

1−ᾱt

√
1− αt

where η is hyperparameter for controlling the stochasticity of diffusion trajectory. If η = 0, we get deterministic
diffusion trajectory (i.e., implicit model)!

Problem 10. Prove that marginalizing DDIM forward kernel in Eq. 40 and Eq. 41 gives us the same dis-
tribution as in DDPM (hint: use Bayes’ rule).

q(xt|x0) = N (xt|
√
ᾱtx0, (1− ᾱt)I) (42)

10

4.3 Variational Inference Objective of DDIM
Similar to DDPM, we can write the variational objective (uppder bound of Ex0∼pdata(x)[− log pθ(x0)]) as:

Lvlb(θ;σ) = Ex0∼pdataEx1:T∼qσ(x1:T |x0)[− log
pθ(xT)

qσ(xT |x0)
−

T∑
t=2

log
pθ(xt−1|xt)

qσ(xt−1|xt, x0)
− log pθ(x0|x1)] (43)

RECALL: In DDPM, surrogate objective (of each timestep) was:

Lt−1 = Ex0∼pdata(x),ϵt∼N (0,I)[∥ϵt − ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵt; t)∥2] (44)

The total surrogate objective is defined as:

Lγ(θ) =

T∑
t=1

γtLt−1 (45)

where γ = [γ1, ..., γT] is a scaling-factor.

Note that this was surrogate objective for DDPM; however, following the Theorem, optimizing Lγ can be
equivalent to optimizing Lvlb(θ;σ) for ANY σ = [σ1, ..., σT] when γ satisfies some condition:

Theorem: For all σ > 0, there exists γ ∈ RT
>0 and C ∈ R such that Lvlb(θ;σ) = Lγ(θ) + C (46)

This means, we do not need to train or further finetune any diffusion model!!!

Problem 11. Prove Theorem.

11

4.4 Sampling for DDIM
Again, after training ϵθ, we can use it to model the reverse-kernel pθ(xt−1|xt) as below:

xt−1 =
√
ᾱt−1(

xt −
√
1− ᾱtϵθ(xt; t)√

ᾱt
) +

√
1− ᾱt−1 − σ2

t · ϵθ(xt; t) + σtzt (47)

Each components have different semantics, and are worth noting the meanings:

•
√
ᾱt−1(

xt−
√
1−ᾱtϵθ(xt;t)√

ᾱt
): Denotes “predicted x0”. The reverse process, while it is viewed as predicting

ϵθ, can also be viewed as predicting x0 form xt.

•
√

1− ᾱt−1 − σ2
t · ϵθ(xt; t): Denotes “direction-of-score at xt”. So basically this is the vector-field that

pushes the sample towards the mode.

• σtzt: Denotes “Langevin noise”. This was uncontrollable in DDPM, but by a clever mathematical trick in
DDIM (re-defining forward kernel in non-Markovian manner), we can control this stochasticity (e.g., to
remove stochasticity, simply set σ = 0!!)

As mentioned earlier, during practice, the Langevin noise scale σt is set as σt = η
√

1−ᾱt−1

1−ᾱt

√
1− αt:

• If η = 0, the forward-kernel is deterministic process.

• If η = 1, the forward-kernel is same as in DDPM.

Problem 12. Show that when η = 1, Eq. 47 is equivalent to reverse-process of DDPM.

4.5 Accelerated Sampling
If we set γ = 1, the surrogate objective L1 does not depend on the user-defined noise schedule σ, which means
we can use pretrained diffusion model for shorter timesteps, as long as:

• Timestep-schedule [τ1, τ2, ..., τs] is included in the original timestep-schedule [1, ..., T]

• σshorter = [στ1 , στ2 , ..., στ3]

In this case, the marginals become:

q(xτi |x0) = N (xτi |
√

ᾱτix0, (1− ᾱτi)I) (48)

and sampling equation becomes:

xτi−1
=

√
ᾱτi

ᾱτi−1

(
xt −

√
1− ᾱτiϵθ(xτi ; τi)√

ᾱτi

) +

√
1− ᾱτi

ᾱτi−1

− σ2
t · ϵθ(xt; t) + σtzt (49)

which is much faster if s = len([τ1, ..., τs]) (i.e., s = 50) is way smaller than original DDPM (i.e., 1000 steps)!!

12

References
[1] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances in neural information

processing systems, 34:8780–8794, 2021.
[2] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural information

processing systems, 33:6840–6851, 2020.
[3] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022.
[4] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching. Journal of

Machine Learning Research, 6(4), 2005.
[5] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502,

2020.
[6] Yang Song. Generative modeling by estimating gradients of the data distribution. https://yang-song.net/

blog/2021/score/, 2021.
[7] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. Advances in neural

information processing systems, 32, 2019.
[8] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach to density and score

estimation. In Uncertainty in Artificial Intelligence, pages 574–584. PMLR, 2020.

13

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

	Noise-Conditional Score Network (NCSN)
	Preliminatries
	Generative Models
	What is ``score''??
	What is Langevin dynamics?
	Score-matching hyvarinen2005estimation

	Challenges in Score-Based Generative Modelling
	Manifold Hypothesis & Inaccurate Score Estimation
	Slow mixing of Langevin Dynamics

	How does this work mitigate these problems?
	Perturbing data-distribution with noise
	Annealed Langevin Dynamics for Inference

	Denoising Diffusion Probabilistic Models (DDPM)
	Objectives
	Surrogate Objectives
	Computing Surrogate Losses

	Classifier-Free Guidance
	Classifier Guidance
	Classifier-Free Guidance

	DDIM
	Challenges with Diffusion Models
	Non-Markovian Forward Kernel
	Variational Inference Objective of DDIM
	Sampling for DDIM
	Accelerated Sampling

